skip to main content


Search for: All records

Creators/Authors contains: "Chen, Yingfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We have discovered that the peak phase time of predawn thermosphere‐ionosphere Na (TINa) layers (∼110–150 km altitude) undergoes clear annual variations with the earliest occurrence in summer and latest in winter over Boulder (40.13°N, 105.24°W), which are closely correlated to annual phase variations of sunrise and tidal winds. Such discoveries were enabled by the first characterization of 12 monthly composites of TINa layers from January through December using 7 years of lidar observations (2011–2017). Despite their tenuous densities, the predawn TINa layers have nearly 100% occurrence rate (160 out of 164 nights of observations). Monthly composites show downward‐phase‐progression TINa descending at similar phase speeds as Climatological Tidal Model of the Thermosphere tidal winds. These TINa layers occur in ion convergence but neutral divergence regions, modeled using tidal winds. These results support the formation mechanism (neutralization of converged TINa+forming TINa) proposed previously and suggest that migrating tidal winds experience annual phase variations.

     
    more » « less
  2. Abstract

    We report the first lidar observations of regular occurrence of mid‐latitude thermosphere‐ionosphere Na (TINa) layers over Boulder (40.13°N, 105.24°W), Colorado. Detection of tenuous Na layers (∼0.1–1 cm−3from 150 to 130 km) was enabled by high‐sensitivity Na Doppler lidar. TINa layers occur regularly in various months and years, descending from ∼125 km after dusk and from ∼150 km before dawn. The downward‐progression phase speeds are ∼3 m/s above 120 km and ∼1 m/s below 115 km, consistent with semidiurnal tidal phase speeds. One or more layers sometimes occur across local midnight. Elevated volume mixing ratios above the turning point (∼105–110 km) of Na density slope suggest in situ production of the dawn/dusk layers via neutralization of converged Na+layers. Vertical drift velocity of TINa+calculated with the Ionospheric Connection Explorer Hough Mode Extension tidal winds shows convergent ion flow phases aligned well with TINa, supporting this formation hypothesis.

     
    more » « less